典型生产机械的电气控制线路分析

人内容提要

本章针对两种典型设备 C650 卧式车床、X-62W 万能铣床的电气控制线 路进行详细分析。介绍机床电气控制线路分析的一般步骤和分析方法。

对典型生产机械的电气控制线路进行分析时,一般步骤如下:

1. 了解设备运动情况及对电气控制的要求

- (1) 了解被控制设备的结构组成、工作原理、机械传动类型及驱动方式、 运动要求。有液压和气动控制的要了解其工作原理和工作状态分析。
- (2) 确定机械与电气的连接部件的信息采集、传递、运动输出、信号检测、 主令信号、执行器的机电对应关系等。
 - (3) 根据运动要求列出对电气控制的要求。

2. 主电路分析

包括确定动力电路中电动机和用电设备数量、控制要求、接线情况、各控制 执行件的设置及动作要求。如交流接触器的主触点相应位置,各组主触点分、合 动作要求, 启动时限流电阻接入与短接。各保护装置的形式。

3. 控制电路分析

根据主电路驱动设备完成设备运动要求过程,逐一对各驱动设备动作的控制 电路进行分析。分析时,要结合说明书或有关的技术资料对整个电气线路划分成 几个部分逐一进行分析,如各电动机的启动、停止、变速、制动、保护及相互间 的联锁等。

2.1 C650 卧式车床电气控制分析

车床是机床中应用最广泛的一种金属切削机床, 主要用于加工各种回转表 面、螺纹和端面,并可通过尾架进行钻孔、铰孔等切削加工。

车床的种类很多,有卧式车床、立式车床、仿形车床及多刀车床,还有单轴及 多轴自动车床、专门货车床等,现以 C650 车床为例对其电气控制系统进行分析。

2.1.1 车床主要结构和运动形式

C650 车床是卧式车床,主要由床身、主轴变速箱、进给变速箱、刀架、溜 板箱等几部分组成,如图 2-1 所示。车床的切削加工运动要求如下。

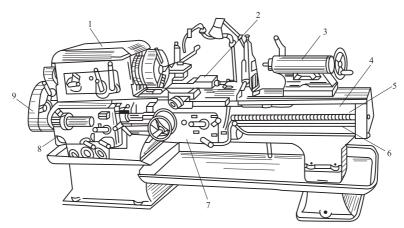


图 2-1 C650 卧式车床外形图 1-主轴变速箱; 2-溜板与刀架; 3-尾座; 4-床身; 5-丝杠; 6-光杠; 7-溜板箱; 8-进给箱; 9-挂轮箱

- (1) 主轴运动: 为卡盘带动工件的旋转运动(切削运动)。
- (2) 进给运动:为溜板箱带动刀具的直线运动,为实现加工的同步,主轴和进给均由主电动机驱动,并通过各自的变速箱来调节主轴转速和进给速度。
- (3) 因加工中转动惯量大,如自由停车则时间长影响生产效率,要求有停车制动功能:采用反接制动方式,其制动力矩大、制动迅速。
 - (4) 切削加工时温度高需冷却液,用冷却泵在工作时长期提供冷却液。
 - (5) 加工中为节约辅助工作时间要求溜板箱(带刀架)能快速移动。

2.1.2 对电力拖动和控制要求

1. 主电动机 M1 (30 kW)

主电动机负责主轴旋转及刀具进给的驱动,要求直接启动连续运行方式,并 有点动的功能以便调整位置;能正、反转以满足螺纹加工需要,停车时带有电气 反接制动。此外,还要显示电动机的工作电流以监视切削状况。

2. 冷却泵电动机 M2

冷却泵电动机在加工时用来提供切削液,采用直接启动,单向运行、连续工作方式。

3. 快速移动电动机 M3

快速移动电动机采用单向点动、间歇性工作方式。

4. 要求有局部照明装置和必要的保护与联锁环节

2.1.3 电气控制电路分析

图 2-2 为 C650 型普通车床的电气控制原理图,表 2-1 为 C650 型普通车床

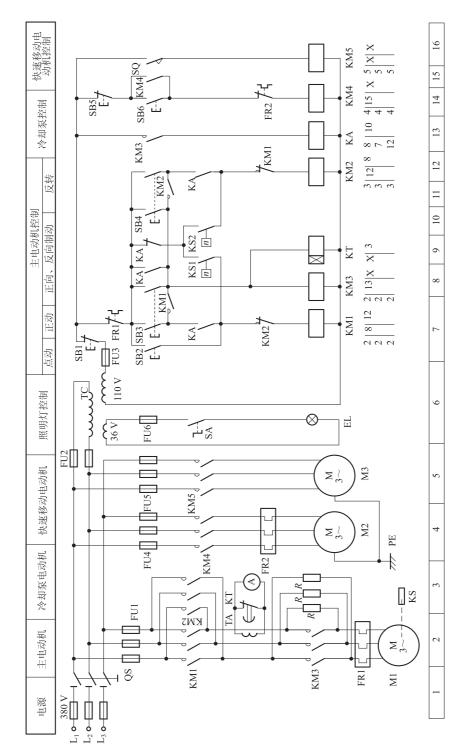


图2-2 C650型普通车床的电气控制原理图

电气元件符号与功能说明(见表2-1)。

符号	名称及用途	符号	名称及用途	符号	名称及用途
M1	主电动机	SQ	快移电动机点动 行程开关	ТС	控制变压器
M2	冷却泵电动机	SA	开关	FU1 ~ FU6	熔断器
М3	快速移动电动机	KS	速度继电器	FR1	主电动机过载 保护热继电器
KM1	主电动机正转接触器	A	电流表	FR2	冷却泵电动机保热继电器
KM2	主电动机反转接触器	SB1	总停按钮	R	限流电阻
КМ3	短接限流电阻接触器	SB2	主电动机正向点动 按钮	EL	照明灯
KM4	冷却泵电动机启动 接触器	SB3	主电动正向启动按钮	TA	电流互感器
KM5	快移电动机启动 接触器	SB4	主电动机反向 启动按钮	QS	隔离开关
KA	中间继电器	SB5	冷却泵电动机 停止按钮		
KT	通电延时继电器	SB6	冷却泵电动机 启动按钮		

表 2-1 C650 型普通车床电气元件符号与功能说明

1. 主电路分析

隔离开关 SQ 将三相电源引入,FU1 为主电动机 M1 的短路保护用熔断器,FR1 为 M1 过载保护用热继电器。R 为限流电阻,防止在点动时连续的启动电流造成电动机过载。通过互感器 TA 接入电流表 A 以监视主电动机绕组的电流。熔断器 FU4、FU5 为电动机 M2、M3 的短路保护。接触器 KM1、KM2 为电动机 M1的正、反转接触器,KM3 断开时将限流电阻接入主电路为 M1 点动时限流用。KM4、KM5 为 M2、M3 启、停用接触器。FR2 为 M2 的过载保护。因快移电动机 M3 短时工作,故不设过载保护。

速度继电器 KS 与主轴相连,停车初时,由于惯性主轴速度较高,其动合触点闭合,进行反接制动,当速度接近为0时,自动分断反接制动电路。

另外,由于启动时电流太大,为防止冲击损坏电流表,附设一个时间继电器 延时动断触点进行保护。

2. 控制电路分析

1) M1 的点动控制

调整刀架时,要求 M1 点动控制,工作过程如下:

- (1) 合上隔离开关 $SQ \rightarrow$ 按启动按钮 $SB2 \rightarrow$ 接触器 KM1 通电 $\rightarrow M1$ 串接限流电阻 R 低速转动,实现点动操作。
 - (2) 松开 SB2→接触器 KM1 断电→M1 停转。
 - 2) M1 的正、反转控制
 - (1) 正转。合上隔离开关 SQ→按启动按钮 SB3→接触器 KM3 通电→中间继 → 时间继电器 KT 通电

电器 KA 通电 \rightarrow 接触器 KM1 通电 \rightarrow 电动机 M1 短接电阻 R 正向启动。主回路中电流表 A 被时间继电器 KT 常闭触头短接 \rightarrow 延时 t 秒后 \rightarrow KT 延时断开常闭触头断开 \rightarrow 电流表 A 串接于主电路,监视负载情况。

主电路中通过电流互感器 TA 接入电流表 A,为防止启动时启动电流对电流表的冲击,启动时利用时间继电器 KT 常闭触头把电流表 A 短接,启动结束,KT 常闭触头断开,电流表 A 投入使用。

(2) 反转。合上隔离开关 SQ→按启动按钮 SB4→接触器 KM3 通电→中间继 → 时间继电器 KT 通电

电器 KA 通电 \rightarrow 接触器 KM2 通电 \rightarrow 电动机 M1 反接电源相序,短接电阻 R 反向启动。电流表 A 跟正转时作用相同。

- (3) 停车。按停止按钮 SB1→控制线路电源全部切断→电动机 M1 停转。
- 3) M1 的反接制动控制

C650 型车床采用速度继电器实现电气反接制动。速度继电器 KS 与电动机 M1同轴连接,当电动机正转时,速度继电器正向触头 KS2 动作;当电动机反转时,速度继电器反向触头 KS1 动作。

M1 反接制动工作过程如下:

- (1) M1 的正向反接制动。电动机正转时,速度继电器正向常开触头 KS2 闭合。制动时,按下停止按钮 SB1 →接触器 KM3、时间继电器 KT、中间继电器 KA、接触器 KM1 均断电,主回路串入电阻 R(限制反接制动电流)→松开 SB1→接触器 KM2 通电(由于 M1 的转动惯性,速度继电器正向常开触头 KS2 仍闭合)→M1 电源反接,实现反接制动,当速度 \approx 0 时,速度继电器正向常开触头断开→KM2 断电→M1 停转,制动结束。
- (2) M1 的反向反接制动。工作过程和正向相同,只是电动机 M1 反转时,速度继电器的反向常开触头 KS1 动作,反向制动时,KM1 通电,实现反接制动。
 - 4) 刀架快速移动控制

转动刀架手柄压下限位开关 SQ→接触器 KM5 通电→电动机 M3 转动,实现刀架快速移动。

5) 冷却泵电动机控制

按启动按钮 SB6→接触器 KM4 通电→电动机 M2 转动,提供切削液。按下停止按钮 SB5→KM4 断电→M2 停止转动。

此外,监视主回路的负载的电流表是通过电流互感器接入的。为了防止电动机启动电流对电流表的冲击,线路中采用一个时间继电器 KT。当启动时,KT 线圈通电,而 KT 的延时断开的动断触头尚未动作,电源互感器二次侧电流只流经触头构成闭合回路,电流表没有电流流过。启动后,KT 延时断开的动断触头打开,此时电流流经电流表,反映出负载电流大小。

2.2 X-62W 万能铣床电气控制分析

铣床是用铣刀进行铣削加工零件的平面、斜面、沟槽等型面的机床。装上分度头后,可以加工直齿或螺旋面,装上回转工作台可以加工凸轮和弧形槽。由于铣床的主运动是铣刀的旋转运动,切削速度高且为多刃的连续切削,所以它的生产效率高。

铣床的种类很多,有卧式铣床、立式铣床、仿形铣床和各种专门铣床。现以 X-62W 万能铣床为例对其电气控制系统进行分析,如图 2-3 所示是 X-62W 万能铣床的外观简图。

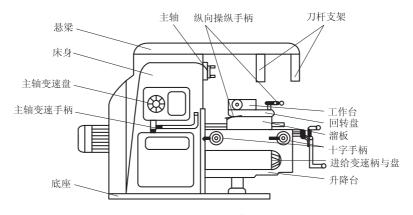


图 2-3 X-62W 万能铣床的外观简图

2.2.1 主要结构和运动形式

X-62W 万能铣床是卧式铣床,具有主轴转速高、调速范围宽、操作方便、工作台能自动循环加工等特点,主要由床身、悬梁、刀杆支架、工作台、溜板和升降台等几部分组成。箱形床身固定在底座上,它是机床的主要部分,用来安装和连接机床的其他部件,内装主轴传动机构和变速操纵机构。床身顶部有水平导轨,其上装有带一个或两个刀杆支架的悬梁,刀杆支架用来支撑铣刀心轴的一端,心轴的另一端固定在主轴上,并由主轴带动旋转。悬梁可沿水平导轨移动,以便调整铣刀的位置。床身的前侧面装有垂直导轨,升降台可沿导轨上下移动。

在升降台上面的水平的导轨上,装有可在平行于主轴轴线方向移动(横向移动,即前后移动)的溜板,溜板上部有可移动的回转台。工作台装在回转台的导轨上,可以做垂直于轴线方向上的移动(纵向移动,即左右移动)。工作台上有固定工件的 T 型槽。因此,固定于工作台上的工件可作上下、左右及前后 3 个方向的移动,便于工作调整和加工时进给方向的选择。

此外,溜板可绕垂直轴线左右旋转 45°,所以工作台还能在倾斜方向进给,以加工螺旋槽。该铣床还可以安装圆工作台以扩大铣削能力。

从上述分析可知, X-62W 万能铣床有3种运动,即主运动、进给运动和辅助运动。主轴带动铣刀的旋转运动称为主运动,加工中工作台带动工件的移动或圆工作台的旋转运动称为进给运动,而工作台带动工件在3个方向的快速移动属于辅助运动。

2.2.2 电力拖动和控制要求

X-62W 万能铣床的主运动和进给运动之间没有速度比例协调的要求,故主轴与工作台各自采用单独的笼型异步电动机拖动。

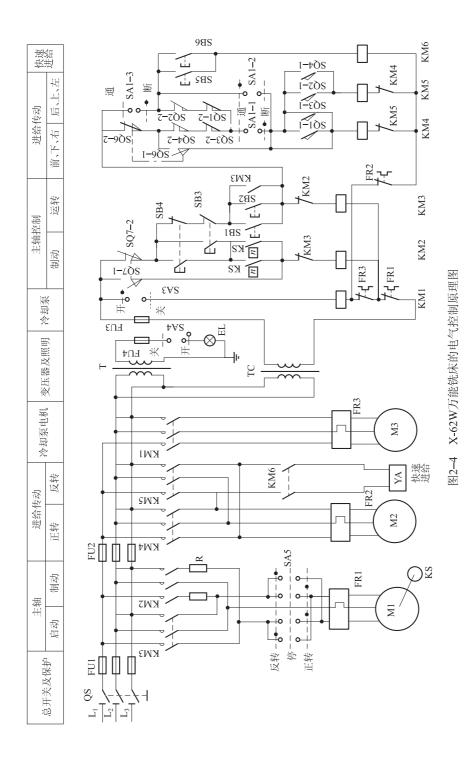
1. 主轴拖动对电气控制的要求

- (1) 主轴电动机 M1 (5.5 kW) 是在空载下直接启动,为完成顺铣和逆铣,要求能正反转。可根据铣刀的种类预先选择转向,在加工过程中不变换转向。
- (2) 铣削加工是多刀多刃不连续切削,负载波动大。为减轻其影响,主轴上装有飞轮,以加大其转动惯量。但为实现主轴快速停车,要求主轴电动机有停车制动控制,以提高工作效率。同时,主轴在上刀时,也应使主轴制动。停车制动采用反接制动。
- (3) 为保证主轴变速时齿轮易于啮合,减小齿轮的端面冲击,要求有变速冲动,即变速时电机能有点动控制。
- (4)为便于操作者在铣床正面与侧面皆可操作,主轴电动机的启动、停止 的控制均为两地操作控制。

2. 进给拖动对电气控制的要求

- (1) 为了实现工作台纵向、横向和垂直方向的进给运动,采用一台 1.5kW 交流电动机 M2 拖动,3 个方向的选择由机械手柄操纵,每个方向的正反向运动由电动机的正反转来实现,同一时间只允许工作台向一个方向移动,故3 个方向的运动应有联锁保护。
- (2) 为了缩短调整运动的时间,提高生产效率,工作台应有快速移动控制。X-62W 万能铣床是采用快速电磁铁吸合改变传动链的传动比来实现的。
- (3) 为适应加工需要,主轴转速与进给速度要有较宽的调节范围。X-62W 万能铣床采用机械变速方法,改变变速箱传动比来实现。为保证变速时齿轮易于

啮合,减小齿轮的端面冲击,要求变速时进给电动机有变速冲动环节。


- (4)使用圆工作台时,要求工作台的旋转运动与工作台的上下、左右、前后6个方向的运动之间有联锁控制,即圆工作台旋转时,工作台不能向其他方向移动。
- (5) 根据工艺要求,主轴旋转与工作台进给应有顺序控制,即进给运动要在铣刀旋转后才能进行,加工结束必须在铣刀停转前停止进给运动。
- (6) 为便于操作者在铣床正面与侧面皆可操作,进给电动机的启动、停止 以及快速移动的控制均为两地操作控制。
 - (7) 工作台左右、前后、上下 6 个方向的运动应具有限位保护。 另外,冷却泵由一台 0.125 kW 交流电动机 M3 拖动,供给铣削用的冷却液。

2.2.3 电气控制线路分析

如图 2-4 所示是 X-62W 万能铣床的电气控制系统原理图,表 2-2 是其电气元件符号及功能说明。其电气线路可分为主电路、控制电路、照明电路等。现主要分析控制电路。

符号	名称与用途	符号	名称与用途
M1	主电动机	SQ6	进给变速冲动开关
M2	进给电动机	SQ7	主轴变速冲动开关
М3	冷却泵电动机	SA1	圆工作台转换开关
KM3	主电动机启、停控制接触器	SA3	冷却泵转换开关
KM2	反接制动接触器	SA4	照明灯开关
KM4、KM5	进给电动机正、反转接触器	SA5	主轴转换开关
KM6	快速移动接触器	SB1 、SB2	分设在两处的主轴启动按钮
KM1	冷却泵接触器	SB3 SB4	分设在两处的主轴停止按钮
KS	速度继电器	SB5 SB6	工作台快速移动按钮
R	快速电磁铁丝圈	FR1	主轴电动机热继电器
SQ1	工作台向右进给行程开关	FR2	进给电动机热继电器
SQ2	工作台向左进给行程开关	FR3	冷却泵热继电器
SQ3	工作台向前、向下进给行程开关	TC	变压器
SQ4	工作台向后、向上进给行程开关	FU1 ~ FU4	短路保护

表 2-2 铣床电气元件符号及功能说明

58

1. 主电动机 M1 的控制

主电动机由接触器 KM3 的控制, 其逻辑表达式为:

$$KM3 = \overline{SQ7 - 2} \cdot \overline{SB4} \cdot \overline{SB3} (SB1 + SB2 + KM3) \cdot \overline{KM2} \cdot \overline{FR1}$$
 (2-1)

为方便操作,主轴电动机的启停按钮各有两个,可在两处中的任一处进行操作。启动前,先将换向开关 SA5 旋转到所需方向,然后按下启动按钮 SB1 或 SB2,接触器 KM3 线圈通电并自锁,主轴电动机 M1 启动。速度继电器 KS 的动合触头闭合,为停车时的反接制动做好准备。

主轴电动机制动时,按下停止按钮 SB3 或 SB4,其动断触点断开,切断 KM3 电源,主轴电动机 M1 的电源被切断,由于存在惯性,M1 会继续旋转。在速度继电器触点断开前,不应松开按钮 SB3 或 SB4,以保证在整个停车过程中进行反接制动。SB3 或 SB4 的动合触点断开,反接制动停止。

当主轴需要变速时,为保证变速齿轮易于啮合,需设置变速冲动控制,它是利用变速手柄和冲动开关 SQ7 通过机械上的联动机构完成的。变速冲动的操作过程是: 先将变速手柄拉向前面,然后旋转变速盘选择转速,再把手柄快速推回原位。在手 柄 推 拉 过 程 中,凸 轮 瞬 时 压 下 弹 簧 杆,冲 动 开 关 SQ7 瞬 时 动 作,SQ7 -1 闭合,SQ7 -2 断开使接触器 KM2 短时通电,电动机 M1 反转一下,以利于齿轮啮合。为避免 KM2 通电时间过长,手柄的推拉操作都应以较快的速度进行。

2. 进给电动机 M2 的控制

1) 工作台横向(前、后)和升降(上、下)进给运动的控制 先将工作台转换开关 SA1 扳在断开位置,这时 SA1-1和 SA1-3接通。

工作台的横向和升降控制是通过十字复式操作手柄进行的,该手柄有上、下、前、后和中间零位共5个位置。在扳动手柄时,通过联动机构将控制运动方向的机械离合器合上,并压下相应的行程开关 SQ3 (向下、向前)或 SQ4 (向上、向后)。比如欲使工作台向上运动,将手柄扳到向上的位置,压下 SQ4,接触 KM5 线圈通电,M2 电动机反转,工作台向上运动,其控制逻辑如下:

$$\begin{aligned} \text{KM5} &= \text{SQ7} - 2 \cdot \text{SB4} \cdot \text{SB3} \cdot \text{KM3} \cdot \text{SA1} - 3 \cdot \text{SQ1} - 2 \cdot \text{SQ1} - 2 \cdot \text{SA1} - 1 \cdot \\ &\quad \text{SQ4} - 1 \cdot \overline{\text{KM4}} \cdot \overline{\text{FR2}} \cdot \overline{\text{FR3}} \cdot \overline{\text{FR1}} \end{aligned}$$

工作台上、下、前、后运动的终端限位,是利用固定在床身上的挡铁撞击手柄,使其回复到中间零位加以实现的。

2) 工作台纵向(左右)运动控制

首先将工作台转换开关 SA1 扳到断开位置,然后通过纵向操作手柄控制工作台的纵向运动。该手柄有左、右、中间 3 个位置,扳动手柄时,一方面合上纵向进给的机械离合器,同时压下行程开关 SQ1 (向右)或 SQ2 (向左)。

例如, 欲使工作台向右运动, 将手柄扳到向右位置, SQ1 被压下, 接触器 KM4 线圈通电, 进给电动机 M2 正转, 工作台向右移动。停止运动时, 只要将手

柄扳回中间位置即可。工作台向左、右动运动的终端限位,也是利用床身上的挡铁撞动手柄使其回到中间位置实现的。接触器 KM4 线圈的逻辑表达示如下:

$$\begin{aligned} \text{KM4} &= \text{SQ7} - 2 \cdot \text{SB4} \cdot \text{SB3} \cdot \text{KM3} \cdot \text{SQ6} - 2 \cdot \text{SQ4} - 2 \cdot \text{SQ3} - 2 \cdot \text{SA1} - 1 \cdot \\ &\text{SQ1} - 1 \cdot \overline{\text{KM5}} \cdot \overline{\text{FR2}} \cdot \overline{\text{FR3}} \cdot \overline{\text{FR1}} \end{aligned}$$

3) 工作台的快速移动控制

工作台上述 6 个方向的快速移动也是由 M2 拖动,通过上述两个操作手柄和快速移动按钮 SB5 和 SB6 实现控制。当按下 SB5 和 SB6 时,接触器 KM6 线圈通电,快速进给电磁铁 YA 线圈接通电源,通过机械机构将快速离合器挂上,实现快速进给。由于 KM6 线圈控制电路中没有自锁,所以快速进给为点动工作,松开按钮,仍以原进给速度工作。

4) 进给变速时冲动控制

由变速手柄与冲动开关 SQ6 通过机械上的联动机构进行控制。其操作顺序是:变速时,将蘑菇形进给变速手柄向外拉一些,转动该手柄选择好进给速度,再把手柄向外一拉并立即推回原位,在拉到极限位置瞬间,其连杆机构推动冲动开关 SQ6,其动断触点 SQ6-2 断开一下,动合触点 SQ6-1 闭合,接触 KM4 线圈短时通电,进给电动机 M2 瞬时转动一下,完成了变速冲动。

5) 圆工作台回转运动控制

圆工作台的回转运动由进给电动机 M2 经传动机构拖动。在机床开动前,先将圆工作台转换开关 SA1 扳到接通的位置,SA1-1 和 SA1-3 断开,SA1-2 闭合,工作台操作手柄于中间位置,行程开关 SQ1~SQ4 均不受压。这时按主轴电动机启动按钮 SB1 或 SB2, 主轴电动机启动,进给电动机 M2 也因接触器 KM4 线圈通电吸合而开始转动,从而拖动工作台转动。此时 KM4 线圈逻辑表达式如下:

$$KM4 = \overline{SQ7 - 2} \cdot \overline{SB3} \cdot \overline{SB3} \cdot \overline{KM3} \cdot \overline{SQ6 - 2} \cdot \overline{SQ4 - 2} \cdot \overline{SQ3 - 2} \cdot \overline{SQ1 - 2} \cdot \overline{SQ1 - 2} \cdot \overline{SQ2 - 2} \cdot \overline{SA1 - 2} \cdot \overline{KM5} \cdot \overline{FR2} \cdot \overline{FR3} \cdot \overline{FR1}$$

电动机 M2 正向旋转,圆工作台只能单方向旋转。由于圆工作台控制电路中 串接了 SQ1~SQ4 的动断触点,所以只要扳动工作台任一进给手柄,都会使圆工 作台停止工作,这就起到了工作台的进给运动与圆工作台联锁保护作用。

6) 进给的联锁

进给运动控制中联锁保护如下:

- (1) 只有主轴电动机启动后,进给电动机才能启动,这是因为进给控制的电源需经接触器 KM3 的辅助动合触点才能形成通路。
- (2) 工作台在同一时刻只允许一个方向的进给运动,这是通过机械和电气的方法实现联锁的。如果两个手柄都离开中间零位,则行程开关 SQ1 ~ SQ4 的 4个动断触点全部断开,接触器 KM4、KM5 的线圈电源全部断开,进给电动机 M2不能转动,达到联锁的目的。

- (3) 进给变速时,两个操作手柄都必须在中间零位,即进给变速冲动时,不能有进给运动。4 个行程开关的 4 个动断触点 $\overline{SQ1-2}$ 、 $\overline{SQ2-2}$ 、 $\overline{SQ3-2}$ 、 $\overline{SQ4-2}$ 串联后,与冲动开关 SQ6 的动合触点 SQ6-1 串联,形成进给冲动控制电路。只要有任一手柄离开中间零位,必有一行程开关被压下,使冲动控制电路断开,接触器 KM4 不能吸合,M2 就不能转动。
 - 3. 冷却泵电动机 M3 的控制

冷却泵电动机由转换开关 SA3 控制, 当接通 SA3 时, 接触器 KM1 通电吸合, 冷却泵电动机 M3 转动。其逻辑表达式如下:

$KM1 = SA3 \cdot FR1 \cdot FR3$

在主电动机 M1 和冷却泵电动机 M3 中,任一个电动机过载发热都会使 KM1 断电,达到过载保护的目的。

4. 照明控制

机床照明灯由变压器 T 将 380 V 交流电压变为 36 V 安全电压供电,由转换 开关 SA4 控制,熔断器 FU4 做短路保护。

- 5. X-62W 万能铣床的电气控制线路特点
- (1) 电气控制线路与机械操作配合相当密切,因此分析中要详细了解机械 结构结构与电气控制的关系。
- (2)运动速度的调整主要是通过机械方法,因此简化了电气控制系统中的调速控制线路,但机构结构相对比较复杂。
 - (3) 控制线路中设计了变速冲动控制,从而使变速顺利进行。
 - (4) 采用两处控制,操作方便。
- (5) 具体完善的电气联锁,并具有短路、零电压、过载及超行程限位保护环节,工作可靠。

2.3 习题及思考题

- 1. 分析机械电气控制时有哪些内容, 应注意些什么?
- 2. 从主电路的结构组成说明 C650 的车床主电动机 M1 的工作状态和控制要求是什么?
- 3. 如果将 C650 卧式车床(图 2-2) 电气原理图中的 KS1 和 KS2 触点位置对调,还有没有反接制动的作用?为什么?
- 4. 说明 X 62W 万能铣床工作台各方向运动,包括慢速和快速移动的控制过程,说明主轴变速及制动的控制过程,主轴运动与工作台运动的联锁关系是什么?
- 5. 在 X 62W (图 2 4) 电气图中,进给电机的过载保护热继电器 FR2 的触点为什么把它放在主电动机接触器 KM1 的下面?能够移到上面吗?