第1	章	概述 …		···· 1
	1.1	冲压コ	艺及冲模的分类	1
	1.2	冲模设	2计的一般步骤	4
	1.3	冲压常	5用材料	7
	1.4	冲模零	\$件常用材料	·· 20
第 2	章	冲裁…		·· 24
	2.1	冲裁作	+的工艺性	
		2.1.1	冲裁件的形状和尺寸	
		2.1.2	冲裁件的精度、表面粗糙度和毛刺	25
	2.2	冲裁作	+的排样与搭边	
		2.2.1	材料利用率	30
		2.2.2	排样	
		2.2.3	提高材料利用率的方法	
		2.2.4	搭边	
		2.2.5	条料宽度和导尺间距离的计算	
	2.3]隙]	
	2.4		三艺力	
		2.4.1	冲裁力的计算	
		2.4.2	卸料力、顶件力、推件力、压料力和侧向力	
		2.4.3	降低冲裁力的方法	
		2.4.4	冲裁模的压力中心	
		2.4.5	冲裁功的验算	
	2.5	凸、凸	J模刃口尺寸计算 ······	
		2.5.1	尺寸计算原则	
			尺寸计算方法	
	2.6	非金属	【材料冲裁	
		2.6.1	材料品种	
		2.6.2	冲栽特点	
		2.6.3	非金属冲裁间隙与搭边值	
		2.6.4	非金属冲裁刃口尺寸计算	
	2.7		Þ裁	
		2.7.1	变形特点	
		2.7.2	精冲件的工艺设计	
		2.7.3	精冲的工艺计算	
	• •	2.7.4	精冲润滑	
	2.8		青冲工艺	
		2.8.1	光洁冲裁	75

	2.8.	.2 整修	
	2.8.	.3 对向凹模精冲	
	2.8.	.4 厚板精冲	
	2.8.	.5 倒角	
	2.8.	.6 沉孔	
	2.8.	.7 压印	
	2.8.	.8 半冲孔	
,	2.9 硬质	质合金冲载	
2	2.10 聚	氨酯橡胶冲裁	
第3₫	章 弯曲		
-	3.1 弯曲	曲件的工艺性	
	3.1.	.1 弯曲件的结构工艺性	
	3.1.	.2 弯曲件的精度	
-	3.2 弯曲	曲件的回弹	
	3.2.	.1 板料弯曲的回弹现象	
	3.2.	.2 板料弯曲的回弹值	
-	3.3 提高	高弯曲件精度与质量的措施	103
	3.3.	.1 减少回弹的措施	
	3.3.	.2 克服偏移的措施	
	3.3.	3 弯曲件常见缺陷及对策	
-	3.4 弯曲	曲件毛坯尺寸计算	109
	3.4.	.1 中性层位置的确定	
	3.4.	.2 r/t>0.5 的弯曲件毛坯尺寸计算	
	3.4.	.3 r/t<0.5 的弯曲件毛坯尺寸计算	
	3.4.	.4 铰链式弯曲件毛坯尺寸计算	
	3.4.	.5 圆棒料弯曲件毛坯尺寸计算	
-	3.5 弯曲	曲工艺力计算	
	3.5.	.1 弯曲过程中力与行程的关系	
	3.5.	.2 弯曲力计算	
	3.5.	.3 压力机公称压力的确定	
-	3.6 弯曲	曲模工作部分尺寸计算	
	3.6.	.1 凸、凹模圆角半径	
	3.6.	.2 凹模深度	
	3.6.	.3 凸、凹模间隙	
	3.6.	.4 凸、凹模宽度尺寸计算	
-	3.7 弯曲	曲件的工艺过程设计	
	3.7.	.1 弯曲件工序安排的一般原则	
	3.7.	.2 弯曲件工序安排示例	
	3.7.	.3 折弯	
	3.7.	.4 聚氨酯橡胶弯曲模	
	3.8 弯曲	曲模结构设计要点	

2

第4章	拉深…		
4.1	1 拉深住	牛的工艺性	
	4.1.1	拉深件的形状	
	4.1.2	拉深件的尺寸精度	133
4.2	2 圆筒作	牛拉深工艺计算	
	4.2.1	拉深毛坯的确定	
	4.2.2	无凸缘圆筒件拉深	
	4.2.3	带凸缘筒形件拉深	
	4.2.4	反拉深	
4.3	3 阶梯圆	圆筒形件拉深	
4.4	1 球面電	零件、锥形零件及抛物面零件的拉深	
	4.4.1	曲面回转体零件拉深成形特点	
	4.4.2	锥形件的拉深	
	4.4.3	球面零件的拉深	
	4.4.4	抛物面零件的拉深	
4.5	5 盒形作	牛拉深	
	4.5.1	盒形件的分类与工序分区	
	4.5.2	盒形件的毛坯尺寸计算	
	4.5.3	盒形件的拉深系数、拉深次数及工序尺寸计算	
	4.5.4	盒形件拉深工序计算的新方法	
4.6	5 变薄挂	立深	
4.7		莫拉深	
4.8	3 拉深]	L艺力计算	
	4.8.1	压边力	
	4.8.2	拉深力	198
	4.8.3	拉深功	
4.9		莫工作部分设计	
	4.9.1	凸、凹模圆角半径	
	4.9.2	凸、凹模间隙	
		凸、凹模径向尺寸计算	
4.1		件的质量分析	
4.1		辅助工序	
第5章			
5.1	L 翻边·		
	5.1.1	孔的翻边	
	5.1.2	外缘翻边	
	5.1.3	变薄翻孔	
	5.1.4	螺纹孔翻边	
	5.1.5	翻边模的结构特点	
5.2	2 胀形.		
	5.2.1	平板毛坯局部成形	
	5.2.2	空心毛坯的胀形	

	5.2.3	胀形模设计方法	226
5.3	3 缩口与	う扩口	229
	5.3.1	缩口	229
	5.3.2	扩口	
	5.3.3	管子的缩口与扩口复合工序	233
5.4	4 校平与	5整形	
5.5	5 压印片	5精压	
第6章	冲模零	件设计	
6.	1 概述…		
	6.1.1	冲模零件的分类	
	6.1.2	冲模零件的标准化	
6.2	2 工作零	零件	
	6.2.1	凸模设计	
	6.2.2	凹模	
6.	3 定位零	\$件	
	6.3.1	定位板和定位销	
	6.3.2	导料销和导料板	
	6.3.3	挡料件	
	6.3.4	导正件	
	6.3.5	典型定位零件的结构与尺寸	
6.4	4 压料、	卸料及推(顶)件装置	
	6.4.1	压料装置	
	6.4.2	卸料及推(顶)件装置	
	6.4.3	典型卸料零件的结构与尺寸	
6.:	5 导向零	零件	
	6.5.1	导柱和导套	
	6.5.2	侧导板与导板	
	6.5.3	导块······	
	6.5.4	典型导向零件的结构与尺寸	
6.0		₣件	
	6.6.1	模柄	
	6.6.2	固定板和垫板	
	6.6.3	典型固定零件的结构与尺寸	
6.'	7 冲模构	莫架	
	6.7.1	冲模模架形式	
	6.7.2	后侧滑动导柱铸铁模架	
	6.7.3	四滚动导柱钢板模架	
6.8		元件	
第7章		构设计	
7.		设计要点	
	7.1.1	冲裁模设计要点	
	7.1.2	弯曲模设计要点	

	7.1.3 拉深模设计要点	354
7.2	单工序模设计	355
	7.2.1 冲裁模典型结构	355
	7.2.2 弯曲模典型结构	
	7.2.3 拉深模典型结构	377
	7.2.4 成形模典型结构	385
7.3	复合模设计	391
	7.3.1 复合模设计要点	391
	7.3.2 复合模典型结构	394
7.4	精冲模具	399
7.5	大型覆盖件成形模	402
第8章	级进模设计	407
8.1	级进模的设计步骤	407
8.2	级进模的条料排样图设计	407
	8.2.1 条料排样图设计原则	408
	8.2.2 条料排样图设计应考虑的因素	408
	8.2.3 载体设计	
	8.2.4 步距精度及基本步距的确定	415
8.3	带料连续拉深	
	8.3.1 带料连续拉深的分类及应用范围	418
	8.3.2 带料连续拉深的料宽和进距的计算	419
	8.3.3 带料连续拉深的拉深系数和拉深相对高度	
	8.3.4 带料连续拉深的工序计算	423
8.4	级进模的凸模设计	425
	8.4.1 凸模长度的确定	425
	8.4.2 凸模工作高度可调结构	426
8.5	级进模的凹模设计	427
	8.5.1 凹模的分类	427
	8.5.2 凹模的常用结构	427
8.6	级进模的卸料装置	438
	8.6.1 卸料装置的结构形式	438
	8.6.2 卸料装置的设计要点	440
8.7	级进模的导料装置	442
	8.7.1 导料装置	442
	8.7.2 侧压装置	442
	8.7.3 条料浮顶器	442
8.8	级进模的安全检测装置	445
	8.8.1 孔检测 利用条料上的导正孔或制件孔来检测	445
	8.8.2 废料回升与检测	
	级进模典型结构	
	冲压设备的选用	
9.1	冲压设备的分类	450

	0 1 1	冲压设备的分类介绍	150
	9.1.1	冲压	· 450
	9.1.2	冲压设备的型号	· 450
	9.1.3	常用冲压设备的主要技术参数	· 452
9.2	冲压设	t备的选择t	• 455
	0.01	冲压设备选择要点	
	9.2.2	机械压力机的选用	• 456
	9.2.3	液压机、摩擦压力机的选用	· 462
9.3	冲模在	医压力机上的安装	· 462
参考文献			466